- 9. *Ганшин В.М., Фесенко А.В., Чебышев А.В.* Тез. докл. Всерос. конф. с междун. участием «Сенсор-2000. Сенсоры и микросистемы», СПб., 21-23 июня, 2000. СПб., 2000. 303 с.
- 10. Крышталь Р.Г., Кундин А.П., Медведь А.В., Шемет В.В. Письма в ЖТФ, 2002, т. 28, вып. 2, с. 25.
- 11. Carbotrap An Excellent Adsorbent for Sampling Many Airborne Contaminants. Supelco Reporter. Vol V, № 1, Supelco, Inc., Bellefonte, PA, 1986, p. 5.
- 12. Comes P., Gonzalez-Flesca N., Menard T., Grimalt J. Anal. Chem., 1993, v. 65, p. 1048.
- 13. *Harper M.* Ann. Occup. Hyg., 1993, v. 37, № 1, p. 65.
- 14. Pankow J. Anal. Chem., 1988, v. 60, p. 950.
- Figge K., Rabel W., Wieck A. Z. Anal. Chem., 1987, Bd. 327, S. 261.
- 16. Kawata K., Uemura T., Kifune I., Tominaga Y., Oikawa K. Bunseki Kagaku, 1982, v. 31, p. 453.
- 17. Seshadri S., Bozelli J. Chemosphere, 1983, v. 12, № 6, p. 809.
- 18. Zaranski M., Bidleman T. J. Chromatogr., 1987, v. 409, p. 235.

- Billings W., Bidleman T. Environ. Sci. Technol., 1980, v. 14, № 6, p. 679.
- 20. *Riba M., Clement B., Haziza M., Torres L.* Toxicol. Environ. Chem., 1991, v. 31—32, p. 235.
- 21. Peters R., Bakkeren H. Analyst, 1994, v. 119, p. 71.
- Hart K., Isabelle L., Pankow J. Environ. Sci. Technol., 1992, v. 26, p. 1048.
- Staniewski J., Rijks J. J. High Resolut. Chromatogr., 1993, v. 16, p. 182.
- Badol C., Borbon A., Locoge N., Léonardis T., Galloo J.C. J. Anal. and Bioanal. Chem., 2004, v. 378, p. 1815.
- 25. Дмитриенко С.Г. Полимеры с молекулярными отпечатками — новые материалы для разделения и концентрирования органических соединений. МГУ, Химический ф-т, 2005
- 26. *Мелихов И.В., Бердоносова Д.Г., Сигейкин Г.И.* Успехи химии, 2002, т. 71, 2, с. 159.

УДК 575+577.152.1

Механизм взаимодействия холинэстераз с фосфорорганическими лигандами и модификация биохимического метода определения соединений антихолинэстеразного действия

Э. Т. Гайнуллина, А. М. Антохин, С. Б. Рыжиков, К. В. Кондратьев, В. Ф. Таранченко

ФГУ «27 Научный центр Министерства обороны Российской Федерации»

МГУ им. М.В. Ломоносова, Физический факультет

НТЦ Федерального управления по безопасному хранению и уничтожению химического оружия

Основную часть запасов химического оружия (XO) на территории России, подлежащего уничтожению, составляют фосфорорганические отравляющие вещества (ФОВ), отличающиеся высокой токсичностью и кумулятивным действием. Поэтому особенно остро стоит вопрос о количественном определении этих веществ на объектах по уничтожению XO на уровне санитарно-гигиенических норм: 10^{-5} — 10^{-6} мг/м³ в воздухе рабочей зоны, 10^{-7} — 10^{-8} мг/м³ в атмосферном воздухе населенных мест [1].

На объектах по уничтожению XO предусмотрено осуществление контроля ФОВ и токсичных продуктов их деструкции на уровне санитарно-гигиенических нормативов двумя способами: в непрерывном режиме [2] и периодическим отбором проб с последующим их анализом в аналитической лаборатории объекта [1]. Анализ отобранных проб проводится по специально разработанным методикам выполнения измерений на основе хроматографического и хромато-масс-спектрометрического методов. На проведение одного анализа по этим методикам требуется от 40 мин до 1 ч, что может приводить к снижению оперативности системы мониторинга [3].

Кроме того, использование хроматографических и хромато-масс-спектрометрических методов анализа не позволяет учесть проявление синергизма Φ OB [4, 5].

В качестве альтернативного метода анализа, характеризующегося высокой чувствительностью и специфичностью по отношению к ФОВ, экспрессностью, снижением погрешности его результатов, может быть

использован биохимический метод, основанный на регистрации скорости ферментативного гидролиза ацетилхолинэстеразой (AChE) природного субстрата ацетилхолина. Гидролиз протекает с чрезвычайно высокой скоростью: один активный центр макромолекулы фермента гидролизует 13000 молекул субстрата за 1 с. Скорость катализируемой реакции приближается к пределу, возможному для биохимической системы [6].

В основе механизма необратимого ингибирования AChE высокотоксичными фосфорорганическими ингибиторами лежит реакция фосфорилирования гидроксильной группы Ser-200 каталитической триады активного центра фермента, протекающая по механизму нуклеофильного замещения у атома фосфора фосфорильной группы молекулы ингибитора. Холинэстеразы с большой скоростью необратимо фосфорилируются фосфорорганическими ингибиторами с образованием стабильного переходного состояния. Исследованиями методом протонного резонанса на примере холинэстеразы крови (BChE) показано, что переходное состояния этой реакции с необратимым ингибитором по механизму образования промежуточного тетраэдрического соединения, аналогичного тетраэдрическому промежуточному соединению при каталитическом гидролизе субстрата, стабилизируется короткой сильной водородной связью, формируемой протоном атома азота кольца His и расположенным поблизости остатком непротонированной аминокислоты Glu [7].

Доминирующая роль в необратимом ингибировании отводится так называемому старению фосфорили-

рованной холинэстеразы, в результате которого не достигается восстановление каталитической активности фермента по отношению к субстрату при воздействии реактиватора. Комплексными исследованиями показано, что «старение» фосфорилированной холинэстеразы обусловлено быстрым гидролизом эфирной связи в молекуле фосфорорганического ингибитора. Алкильные группы ФОВ фосфорилированной холинэстеразы могут взаимодействовать по крайней мере с двумя областями каталитического участка активного центра холинэстераз: триметильным подучастком и подучастком ацилирования [8]. В триметильном подучастке, как и в случае гидролиза ацетилхолина, реализуются электростатические силы, дисперсионные силы короткого диапазона и гидрофобный эффект комплементарного связывания уходящей алкильной группы ФОВ, обеспечивающие снижение энергии активации гидролиза эфирной связи [8].

Процесс дефосфорилирования ингибированной ФОВ холинэстеразы протекает очень медленно по следующим причинам. Одна — это стерическая помеха, активный участок фермента не оптимизирован для дефосфорилирования, остаток His-440 не расположен в оптимальной позиции относительно молекулы воды, что необходимо для ее коррекции к атому фосфора для катализа дефосфорилирования. Быстрое деалкилирование фосфорилированной холинэстеразы создает вторую причину низкой скорости дефосфорилирования, связанную с возникновением отрицательного заряда около His-440. Дело в том, что эфиры фосфоновых кислот содержат анионную группу и очень стойки к нуклеофильной атаке. Анион может формировать солевой мост с His-440, что приводит далее к стабилизации деалкилированной AChE или BChE. Таким образом, необратимое ингибирование холинэстераз фосфорорганическими отравляющими веществами обусловлено двумя факторами: низкой скоростью дефосфорилирования и высокой скоростью деалкилирования на стадии фосфорилирования фермента [8].

Компьютерное моделирование и теоретические исследования [8] показали, что размещение His около триметильного подучастка в активном центре BChE крови человека должно существенно влиять на скорость дефосфорилирования. Для подтверждения этого предположения на основе гена BChE человека методом генной инженерии замещением глицина Gly-117 на His была получена эстераза G117H [8]. Мутант G117H способен катализировать гидролиз ряда фосфорорганических ингибиторов, в том числе зарина и вещества Vx.

Доминирующая роль His в достигнутом результате была подтверждена получением мутанта G117K путем замены Gly-117 в активном центре фермента на лизин Lys. Мутант G117K не катализировал гидролиз зарина и вещества Vx. Измерения показали, что значения константы скорости ингибирования мутанта G117H зарином и веществом Vx соответственно на четыре и три порядка меньше, чем природной BChE. Следовательно, эстераза G117H катализирует гидролиз зарина и Vx. Однако она не катализирует гидролиз зомана.

Особенно быстрое «старение» фосфорилированной зоманом BChE обусловлено высокой скоростью отщепления пинаколилового радикала в молекуле зомана. Уходящий пинаколиловый радикал в процессе деалкилирования зомана является аналогом холиновой

группы ацетилхолина благодаря реализации гидрофобного эффекта комплементарного связывания пинаколилового радикала [9].

Несколько независимых подходов подтверждают участие триметильного подучастка активного центра в быстром «старении» фосфорилированного фермента: 1) конкурентные обратимые ингибиторы с четвертичным атомом азота, например N-метилакридин, медленно «стареют» в случае и с AChE, и BChE; 2) аналоги зомана, например гексилметилфторфосфонат, в 500 раз медленнее «стареют», чем сам зоман. Дополнительно проведенное компьютерное моделирование активного центра BChE показало, что аминокислоты Glu-199 и Trp-84, входящие в триметильный подучасток активного центра, вносят вклад в ускорение гидролиза эфирной связи фосфорилированного фермента [9].

В соответствии с результатами компьютерного моделирования путем двойного замещения Glu-197 на Gln и Gly-117 на Ніѕ был получен мутант G117H/E197G, способный катализировать гидролиз зарина, вещества Vx и всех четырех стереоизомеров зомана. Эстеразы G117H/E197G и G117H сохраняют способность катализировать гидролиз бутирилтиохолина, однако скорость его ферментативного гидролиза несколько ниже по сравнению со скоростью ферментативного гидролиза под действием природной BChE. Значеконстанты скорости ингибирования G117H/E197G зоманом меньше в 2000 раз, чем природной BChE. Авторы работы [10] пришли к заключению, что именно синергизм двух аминокислотных остатков His и Gln активного центра бутирилхолинэстеразы превращает этот фермент в эстеразу, способную катализировать гидролиз такого сильного необратимого ингибитора, как зоман. Реакции фосфорилирования и дефосфорилирования этого фермента стереоспецифичны, причем лимитирующей является стадия дефосфорилирования. Спонтанная реактивация ингибированной зоманом эстеразы G117H/E197G без использования оксимов показывает, что именно Glu-197 триметильного подучастка активного центра фермента играет доминирующую роль в большой скорости деалкилирования фосфорилированной BChE.

Участие Тгр-84 в каталитическом процессе ферментативного гидролиза ацетилхолина и необратимом ингибировании BChE идентифицировано с помощью флуоресцентных меток [10-16]. На примере N-метилакридина и ряда других производных акридина и хинолина установлено мгновенное тушение флуоресценции флуорофора-ингибитора I_f в присутствии холинэстеразы [10-14]. Наблюдаемое тушение обусловлено образованием нефлуоресцирующего комплекса EI_f с переносом заряда с участием флуорофораингибитора I_f в возбужденном состоянии и индольной группы Тгр активного центра холинэстеразы [12-15]. При связывании в комплекс с ферментом концентрация свободного флуорофора-ингибитора \mathbf{I}_{f} уменьшается; при воздействии необратимого ингибитора \mathbf{I}_{n} , например ФОВ, на комплекс EI_f наблюдается увеличение интенсивности флуоресценции системы в результате необратимого связывания фермента с одновременным освобождением флуорофора-ингибитора I_f.

Эти данные были использованы для разработки флуоресцентного бессубстратного способа и экспрессметодик определения ингибиторов холинэстераз [13, 14].

Иной аналитический эффект наблюдается при действии холинэстеразы на флуорофор-ингибитор бромид этидия (бромид 3,8-диамино-5-этил-6-фенилфенантридина): такое взаимодействие сопровождается образованием интенсивно флуоресцирующего комплекса BChE с бромидом этидия, полоса флуоресценции которого ($\lambda_{\text{мах}} = 525 \text{ hm}$) сдвинута в область коротких волн относительно полосы флуоресценции бромида этидия ($\lambda_{\text{мах}} = 610 \text{ hm}$) [15]. Предложен механизм образования интенсивно флуоресцирующего комплекса BChE с бромидом этидия, заключающийся в резонансной передаче энергии флуоресценции в результате перекрывания спектра флуоресценции этого комплекса со спектром поглощения бромида этидия в области 500 нм [15].

На примере параоксона показано снижение интенсивности флуоресценции комплекса BChE с бромидом этидия в результате диссоциации комплекса по мере связывания BChE необратимым ингибитором. На основе результатов данного исследования предложена методика определения необратимых ингибиторов холинэстераз [16].

Кинетическими и флуоресцентными исследованиями показана уникальная роль периферийного участка активного центра AChE в каталитическом процессе взаимодействия с лигадами. Так, кинетическими исследованиями ферментативного гидролиза ACh E смесей ацетилтиохолина с карбамоилхолином установлена существенная роль периферийного участка в активировании каталитической реакции гидролиза ацетилхолина. Субстрат выступал в данном эксперименте в качестве репортера для каталитического участка, выдававшего информацию о поступлении в периферийный участок лиганда, способного связываться с подучастком ацилирования [17]. Ацетилхолин принимает участие в активировании ацилирования каталитического участка фермента, но не участвует в активировании деацилирования, что позволяет объяснить ингибирование AChE высокими концентрациями специфичного субстрата ацетилхолина.

Периферийному участку отводится значительная роль и в активировании реакции необратимого ингибирования AChE. Известен ряд обратимых ингибиторов AChE, специфически связывающихся с периферийным участком, также играющих роль репортера для подучастка ацилирования активного центра [18], например, пропидиум, галламин, тиофлавин Т и др. Эти соединения при связывании с периферийным участком активного центра увеличивают скорость ингибирования AChE соединениями, связывающимися с подучастком ацилирования, в том числе и фосфорорганическими ингибиторами [18, 19]. Убедительные данные, подтверждающие приведенный механизм, получены с использованием тиофлавина Т в качестве флуоресцентной метки на примере модифицированной AChE эритроцитов человека. Тиофлавин Т является ингибитором AChE и селективно связывается с периферийным участком активного центра фермента. При этом наблюдается увеличение интенсивности флуоресценции метки более чем в 1000 раз [18].

На примере эдрофониума (этил(м-гидроксифенил)диметиламмоний), селективно взаимодействующего с подучастком ацилирования, показано снижение интенсивности флуоресценции фермент-инги-

биторного комплекса ацетилхолинэстераза-тиофлавин в 2,7—4,2 раза в присутствии ингибиторов, связывающихся с подучастком ацилирования, в частности фосфорорганических токсикантов, в результате образования тройного комплекса [18].

Следовательно, тушение флуоресценции комплекса ацетилхолинэстераза-тиофлавин лигандом, связывающимся с ацилирующим участком, демонстрирует конформационное взаимодействие между периферийным участком и подучастком ацилирования. Именно такое взаимодействие, очевидно, и обеспечивает механизм ускорения реакции фосфорилирования AChE [19].

Таким образом, успехи, достигнутые в исследовании механизма взаимодействия необратимых ингибиторов с AChE, открывают перспективу разработки аналитических методик и различных сенсорных устройств на основе биохимического метода, соответствующих по чувствительности и экспрессности высоким требованиям к техническим средствам, предназначенным для проведения мониторинга в зонах защитных мероприятий объектов по уничтожению химического оружия.

ЛИТЕРАТУРА

- Концепция мониторинга отравляющих веществ и продуктов их деструкции на объектах по уничтожению химического оружия. М.: УНВ РХБЗ, 1998.
- 2. Газосигнализатор ГСБ «Ветерок». Руководство по эксплуатации.
- 3. FOCT 12.1.005-88.
- 4. Moser V. C., Casey M., Hamm A., Carter W. H. Jr., Simmons J.E., Gennings C. Toxicol. Sci., 2005, v. 86, p. 101.
- 5. Rendon-von Osten .J., Ortiz-Arana A., Guilhermino L., Soares A.M. Chemosphere, 2005, v.58, p. 62734.
- Rosenberry T.L., Johnson J.L., Cusack B., Thomas J.L., Emani S., Venkatasubban K.S. Chem. Biol. Interact., 2005, v. 157, p. 181–186.
- 7. Viragh C., Akhmetshin R., Kovach I.M., Broomfield C. Ibid., 1997, v. 36, p. 8243–8249.
- 8. Millard C.B., Lockridge O., Broomfield C.A. Ibid., 1995, v. 34, p. 15925—15931.
- Millard C.B, Lockridge O., Broomfield C.A. Ibid., 1998, v. 37, p. 237—243.
- Веткин Д.О., Власкин Д.Н., Гайнуллина Э.Т., Рыжиков С.Б., Таранченко В.Ф. Бюл. экспер. биол. и мед., 2005, № 2, с. 234—236
- 11. Караваев В.А., Веткин Д.О., Гайнуллина Э.Т., Нурмухаметов Р.Н., Рыжиков С.Б., Таранченко В.Ф. Изв. АН. Сер. биол., 2004, № 2, с. 157—162.
- 12. Гайнуллина Э.Т., Еремин С.А., Рыбальченко И.В., Рыжиков С.Б., Таранченко В.Ф. Патент РФ № 2165458, 2001.
- 13. Гайнуллина Э.Т., Рыбальченко И.В., Рыжиков С.Б., Таранченко В.Ф., Цехмистер В.И. Патент РФ № 2198394, 2003.
- 14. Гайнуллина Э.Т., Караваев В.А., Клюстер О.В., Рыжиков С.Б., Таранченко В.Ф. Изв. АН. Сер. биол., 2006, № 3, с. 292—297.
- Веткин Д.О., Власкин Д.Н., Гайнуллина Э.Т., Рыжиков С.Б., Таранченко В.Ф. Биофизика, 2005, v. 50, № 5, с. 793—796.
- Gainullina E.T., Kondratjev K.V., Ryzhikov S.B., Taranchenko V.F. Int. Congr. on Analytical Sciences (ICAS-2006). Book of Abstracts, 2006, v. 1, p. 121.
- Rosenberry T.L., Johnson J.L., Cusack B., Thomas J.L., Emani S., Venkatasubban K.S. Chem. Biol. Interact., 2005, v. 157, p. 181–189.
- De Ferrari G.V., Mallender W.D., Inestrosa N.C., Rosenberry T.L.
 J. Biol. Chem., 2001, v. 276, p. 23282—23287.
- Radic Z., Taylor P. Chem. Biol. Interact., 1999, v. 119, p. 111-117.